Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract With technological advancements in diagnostic imaging, smart sensing, and wearables, a multitude of heterogeneous sources or modalities are available to proactively monitor the health of the elderly. Due to the increasing risks of falls among older adults, an early diagnosis tool is crucial to prevent future falls. However, during the early stage of diagnosis, there is often limited or no labeled data (expert-confirmed diagnostic information) available in the target domain (new cohort) to determine the proper treatment for older adults. Instead, there are multiple related but non-identical domain data with labels from the existing cohort or different institutions. Integrating different data sources with labeled and unlabeled samples to predict a patient's condition poses a significant challenge. Traditional machine learning models assume that data for new patients follow a similar distribution. If the data does not satisfy this assumption, the trained models do not achieve the expected accuracy, leading to potential misdiagnosing risks. To address this issue, we utilize domain adaptation (DA) techniques, which employ labeled data from one or more related source domains. These DA techniques promise to tackle discrepancies in multiple data sources and achieve a robust diagnosis for new patients. In our research, we have developed an unsupervised DA model to align two domains by creating a domain-invariant feature representation. Subsequently, we have built a robust fall-risk prediction model based on these new feature representations. The results from simulation studies and real-world applications demonstrate that our proposed approach outperforms existing models.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract We used smartphone technology to differentiate the gait characteristics of older adults with osteoporosis with falls from those without falls. We assessed gait mannerism and obtained activities of daily living (ADLs) with wearable sensor systems (smartphones and inertial measurement units [IMUs]) to identify fall-risk characteristics. We recruited 49 persons with osteoporosis: 14 who had a fall within a year before recruitment and 35 without falls. IMU sensor signals were sampled at 50 Hz using a customized smartphone app (Lockhart Monitor) attached at the pelvic region. Longitudinal data was collected using MoveMonitor+ (DynaPort) IMU over three consecutive days. Given the close association between serum calcium, albumin, PTH, Vitamin D, and musculoskeletal health, we compared these markers in individuals with history of falls as compared to nonfallers. For the biochemical parameters fall group had significantly lower calcium ( P = 0.01*) and albumin ( P = 0.05*) and higher parathyroid hormone levels ( P = 0.002**) than nonfall group. In addition, persons with falls had higher sway area ( P = 0.031*), lower dynamic stability ( P < 0.001***), gait velocity ( P = 0.012*), and were less able to perform ADLs ( P = 0.002**). Thus, persons with osteoporosis with a history of falls can be differentiated by using dynamic real-time measurements that can be easily captured by a smartphone app, thus avoiding traditional postural sway and gait measures that require individuals to be tested in a laboratory setting.more » « less
- 
            The aim of this study was to investigate to what extent PD affects the ability to walk, respond to balance perturbations in a single training session, and produce acute short-term effects to improve compensatory reactions and control of unperturbed walking stability. Understanding the mechanism of compensation and neuroplasticity to unexpected step perturbation training during walking and static stance can inform treatment of PD by helping to design effective training regimens that remediate fall risk. Current rehabilitation therapies are inadequate at reducing falls in people with Parkinson’s disease (PD). While pharmacologic and surgical treatments have proved largely ineffective in treating postural instability and gait dysfunction in people with PD, studies have demonstrated that therapy specifically focusing on posture, gait, and balance may significantly improve these factors and reduce falls. The primary goal of this study was to assess the effectiveness of a novel and promising intervention therapy (protective step training – i.e., PST) to improve balance and reduce falls in people with PD. A secondary goal was to understand the effects of PST on proactive and reactive feedback responses during stance and gait tasks. Multiple-baseline, repeated measures analyses were performed on the multitude of proactive and reactive performance measures to assess the effects of PST on gait and postural stability parameters. In general, the results indicate that participants with PD were able to use experiences with perturbation training to integrate and adapt feedforward and feedback behaviors to reduce falls. The ability of the participants with PD to adapt to changes in task demands suggests that individuals with PD could benefit from the protective step training to facilitate balance control during rehabilitation.more » « less
- 
            The relationship between the robustness of HRV derived by linear and nonlinear methods to the required minimum data lengths has yet to be well understood. The normal electrocardiography (ECG) data of 14 healthy volunteers were applied to 34 HRV measures using various data lengths, and compared with the most prolonged (2000 R peaks or 750 s) by using the Mann–Whitney U test, to determine the 0.05 level of significance. We found that SDNN, RMSSD, pNN50, normalized LF, the ratio of LF and HF, and SD1 of the Poincaré plot could be adequately computed by small data size (60–100 R peaks). In addition, parameters of RQA did not show any significant differences among 60 and 750 s. However, longer data length (1000 R peaks) is recommended to calculate most other measures. The DFA and Lyapunov exponent might require an even longer data length to show robust results. Conclusions: Our work suggests the optimal minimum data sizes for different HRV measures which can potentially improve the efficiency and save the time and effort for both patients and medical care providers.more » « less
- 
            Gait speed assessment increases the predictive value of mortality and morbidity following older adults’ cardiac surgery. The purpose of this study was to improve clinical assessment and prediction of mortality and morbidity among older patients undergoing cardiac surgery through the identification of the relationships between preoperative gait and postural stability characteristics utilizing a noninvasive-wearable mobile phone device and postoperative cardiac surgical outcomes. This research was a prospective study of ambulatory patients aged over 70 years undergoing non-emergent cardiac surgery. Sixteen older adults with cardiovascular disease (Age 76.1 ± 3.6 years) scheduled for cardiac surgery within the next 24 h were recruited for this study. As per the Society of Thoracic Surgeons (STS) recommendation guidelines, eight of the cardiovascular disease (CVD) patients were classified as frail (prone to adverse outcomes with gait speed ≤0.833 m/s) and the remaining eight patients as non-frail (gait speed >0.833 m/s). Treating physicians and patients were blinded to gait and posture assessment results not to influence the decision to proceed with surgery or postoperative management. Follow-ups regarding patient outcomes were continued until patients were discharged or transferred from the hospital, at which time data regarding outcomes were extracted from the records. In the preoperative setting, patients performed the 5-m walk and stand still for 30 s in the clinic while wearing a mobile phone with a customized app “Lockhart Monitor” available at iOS App Store. Systematic evaluations of different gait and posture measures identified a subset of smartphone measures most sensitive to differences in two groups (frail versus non-frail) with adverse postoperative outcomes (morbidity/mortality). A regression model based on these smartphone measures tested positive on five CVD patients. Thus, clinical settings can readily utilize mobile technology, and the proposed regression model can predict adverse postoperative outcomes such as morbidity or mortality events.more » « less
- 
            Abstract Falls are among the most common cause of decreased mobility and independence in older adults and rank as one of the most severe public health problems with frequent fatal consequences. In the present study, gait characteristics from 171 community-dwelling older adults were evaluated to determine their predictive ability for future falls using a wearable system. Participants wore a wearable sensor (inertial measurement unit, IMU) affixed to the sternum and performed a 10-m walking test. Measures of gait variability, complexity, and smoothness were extracted from each participant, and prospective fall incidence was evaluated over the following 6-months. Gait parameters were refined to better represent features for a random forest classifier for the fall-risk classification utilizing three experiments. The results show that the best-trained model for faller classification used both linear and nonlinear gait parameters and achieved an overall 81.6 ± 0.7% accuracy, 86.7 ± 0.5% sensitivity, 80.3 ± 0.2% specificity in the blind test. These findings augment the wearable sensor's potential as an ambulatory fall risk identification tool in community-dwelling settings. Furthermore, they highlight the importance of gait features that rely less on event detection methods, and more on time series analysis techniques. Fall prevention is a critical component in older individuals’ healthcare, and simple models based on gait-related tasks and a wearable IMU sensor can determine the risk of future falls.more » « less
- 
            society as a whole. Technologies that are able to detect individuals at risk of fall before occurrence could help reduce this burden by targeting those individuals for rehabilitation to reduce risk of falls. Wearable technologies especially, which can continuously monitor aspects of gait, balance, vital signs, and other aspects of health known to be related to falls, may be useful and are in need of study. A systematic review was conducted in accordance with the Preferred Reporting Items for Systematics Reviews and Meta-Analysis (PRISMA) 2009 guidelines to identify articles related to the use of wearable sensors to predict fall risk. Fifty four studies were analyzed. The majority of studies (98.0%) utilized inertial measurement units (IMUs) located at the lower back (58.0%), sternum (28.0%), and shins (28.0%). Most assessments were conducted in a structured setting (67.3%) instead of with free-living data. Fall risk was calculated based on retrospective falls history (48.9%), prospective falls reporting (36.2%), or clinical scales (19.1%). Measures of the duration spent walking and standing during free-living monitoring, linear measures such as gait speed and step length, and nonlinear measures such as entropy correlate with fall risk, and machine learning methods can distinguish between falls. However, because many studies generating machine learning models did not list the exact factors being considered, it is difficult to compare these models directly. Few studies to date have utilized results to give feedback about fall risk to the patient or to supply treatment or lifestyle suggestions to prevent fall, though these are considered important by end users. Wearable technology demonstrates considerable promise in detecting subtle changes in biomarkers of gait and balance related to an increase in fall risk. However, more large-scale studies measuring increasing fall risk before first fall are needed, and exact biomarkers and machine learning methods used need to be shared to compare results and pursue the most promising fall risk measurements. There is a great need for devices measuring fall risk also to supply patients with information about their fall risk and strategies and treatments for prevention.more » « less
- 
            One of the most basic pieces of information gained from dynamic electromyography is accurately defining muscle action and phase timing within the gait cycle. The human gait relies on selective timing and the intensity of appropriate muscle activations for stability, loading, and progression over the supporting foot during stance, and further to advance the limb in the swing phase. A common clinical practice is utilizing a low-pass filter to denoise integrated electromyogram (EMG) signals and to determine onset and cessation events using a predefined threshold. However, the accuracy of the defining period of significant muscle activations via EMG varies with the temporal shift involved in filtering the signals; thus, the low-pass filtering method with a fixed order and cut-off frequency will introduce a time delay depending on the frequency of the signal. In order to precisely identify muscle activation and to determine the onset and cessation times of the muscles, we have explored here onset and cessation epochs with denoised EMG signals using different filter banks: the wavelet method, empirical mode decomposition (EMD) method, and ensemble empirical mode decomposition (EEMD) method. In this study, gastrocnemius muscle onset and cessation were determined in sixteen participants within two different age groups and under two different walking conditions. Low-pass filtering of integrated EMG (iEMG) signals resulted in premature onset (28% stance duration) in younger and delayed onset (38% stance duration) in older participants, showing the time-delay problem involved in this filtering method. Comparatively, the wavelet denoising approach detected onset for normal walking events most precisely, whereas the EEMD method showed the smallest onset deviation. In addition, EEMD denoised signals could further detect pre-activation onsets during a fast walking condition. A comprehensive comparison is discussed on denoising EMG signals using EMD, EEMD, and wavelet denoising in order to accurately define an onset of muscle under different walking conditions.more » « less
- 
            Although Support Vector Machines (SVM) are widely used for classifying human motion patterns, their application in the automatic recognition of dynamic and static activities of daily life in the healthy older adults is limited. Using a body mounted wireless inertial measurement unit (IMU), this paper explores the use of SVM approach for classifying dynamic (walking) and static (sitting, standing and lying) activities of the older adults. Specifically, data formatting and feature extraction methods associated with IMU signals are discussed. To evaluate the performance of the SVM algorithm, the effects of two parameters involved in SVM algorithm—the soft margin constant C and the kernel function parameter γ—are investigated. The changes associated with adding white-noise and pink-noise on these two parameters along with adding different sources of movement variations (i.e., localized muscle fatigue and mixed activities) are further discussed. The results indicate that the SVM algorithm is capable of keeping high overall accuracy by adjusting the two parameters for dynamic as well as static activities, and may be applied as a tool for automatically identifying dynamic and static activities of daily life in the older adults.more » « less
- 
            The Lyapunov exponent (LyE) is a trending measure for characterizing gait stability. Previous studies have shown that data length has an effect on the resultant LyE, but the origin of why it changes is unknown. This study investigates if data length affects the choice of time delay and embedding dimension when reconstructing the phase space, which is a requirement for calculating the LyE. The effect of three different preprocessing methods on reconstructing the gait attractor was also investigated. Lumbar accelerometer data were collected from 10 healthy subjects walking on a treadmill at their preferred walking speed for 30 min. Our results show that time delay was not sensitive to the amount of data used during calculation. However, the embedding dimension had a minimum data requirement of 200 or 300 gait cycles, depending on the preprocessing method used, to determine the steady-state value of the embedding dimension. This study also found that preprocessing the data using a fixed number of strides or a fixed number of data points had significantly different values for time delay compared to a time series that used a fixed number of normalized gait cycles, which have a fixed number of data points per stride. Thus, comparing LyE values should match the method of calculation using either a fixed number of strides or a fixed number of data points.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
